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A method is given for processing data on channel cross-mixing in bundles of fin- 
ned rods, which allows one to analyze various sources of data and to derive gen- 
eral relationships for the mixing coefficients. 

Bundles of cylindrical rods or tubes with spiral fins or wire packing are widely used 
in power plants of various types [1-3]. These rods accelerate the channel cross-mixing in 
a bundle, which evens out nonuniformities in the temperature and velocity patterns, since 
these may arise from uneven energy production and other causes [4]. 

There are two ways of calculating the temperature distribution in such a rod bundle. 
For example, the exchange rates between coolant flows in adjacent cells in a bundle may be 
characterized by a mixing coefficient, which is the proportion of the flow exchanged per 
unit length taken relative to the total flow in a channel [4]: 

-~ = G~flG~. (1) 

Calculations on the temperature patterns involve solving a system of energy equations written 
for the cells and closed by means of obserVed channel cross-mising coefficients ~ [4]. 

If the system has a large number of rods, one can also use an approach involving homo- 
genization of the real bundle [5]. The flow of the homogenized medium is then described by 
the equations for a continuous medium. The homogenization effect is incorporated by the 
factor (i --m)/m, where m is the porosity of the rod bundle for the coolant with the al- 
lowance for the thickness of the boundary layer, the condition being that the heat balance 
is maintained: 

TOUt 
S GcpdT =Q. (2) 
T. 
In 

For the purposes of the treatment we assume that the rods and housing bear a layer of 
material equal in thickness to the boundary layer 6" [6], and then we consider the free flow 
with slip of the homogenized medium in the new boundaries with distributed sources of bulk 
energy production and hydraulic resistance. This model gives the following system of dif- 
ferential equations for the axisymmetrical case for turbulent motion in a bundle of rods on 
the basis that the velocity vector is everywhere parallel to the axis of the bundle: 

Ou dP + l O (  Ou) pu 2 
pu Ox -- dx ~ 0"---7 prDt prT -~ r  - -  ~ - - '  (3) 2d~ 

pUCp O----x = qv----~ r dr ~ , (4) 

R0 
G = 2=m .I purdr, 

0 

(5) 
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The boundary conditions are 

p = p ( P ,  T), ~ I~(P, T), ~ - - - - = ~  (P, T). 
Cp 6p 

u (0, r ) -  Uin , T(0, r ) :  Tin , P (0, r ) =  Pin' 

(6) 

(7) 

Ou(x'r) I = 0 ,  - - L  OT(x' r)[ = 0 ,  (8) 
Or r=Ro Or r=Ro 

Ou(X,or r, lr=o =0, aT(X,or r}]r=o =0.  (9) 

This  s y s t e m may be s o l v e d  by n u m e r i c a l  methods .  An a n a l o g o u s  sys t em f o r  t he  t h r e e - d i m e n -  
s i o n a l  c a s e  has  been s o l v e d  by m a t r i x  f a c t o r i z a t i o n  [7,  8 ] ,  so t h e  main purpose  of  t h i s  s t u d y  
i s  n o t  to  s o l v e  ( 3 ) - ( 6 ) ,  bu t  to  d e f i n e  a g e n e r a l  r e l a t i o n s h i p  f o r  t h e  e f f e c t i v e  d i f f u s i o n  
coefficient D t in relation to the parameters that determine the mixing in bundles of finned 
rods with turbulent flow. The value of D t has to be known in order to close (3)-(6). The 
need for this arises because at present no formulas are available for D t. 

The value of D t is uniquely related to the mixing factor ~, which can be shown as fol- 
lows. The amount of heat Qij transferred from cell i to cell j in unit length is 

Qij = Gi~.cp (T~ - -  T~), Qii = 9hOtcp { ~OT' .-.-~-~'],' (i0), (ii) 

where h = p- d r and p is the pitch of the rod lattice. 

We equate the right sides of (i0) and (ii) to get for (OT/Oy)i~ =: (Ti--Tj)/y~, y~ = h that 

We divide the left and right parts of 

to get 

Gij = pD~. (12) 

(12) by 

O i = p u F  e , (13) 

Gi/Gi = DjuF c �9 

We introduce the dimensionless effective diffusion coefficient 

(14) 

= Dt/ud e 

Then from (14) with F c ~m~/2~0.5~/2 we get 

(15) 

k = ~ / 4 d  e (16) 

The value of k defined by (15) is used to close (3)-(6) and in the present case is 
constant over the flow region; the effective diffusion coefficient allows for thelheat trans- 
fer by turbulent diffusion, secondary circulation in the cells, and convective transfer in 
the cross section of the bundle on the scale of the diameter. These transfer mechanisms are 
incorporated by U. 

From (16) we can calculate the dimensionless effective diffusion coefficient k(D t) 
from experimental data on U from various sources [2-4]. 

To relate k to the definitive criteria we use the ~ theorem in the theory of dimensions 
and the hydraulic-diameter rule, which provides for approximate similarity in bundles of 
finned rods. The equivalent diameter is 

d e = 4Fu/H w (17) 

We can use the ~ theorem in combination with the following physical arguments for geo- 
metrically dissimilar rod bundles. When the coolant flows in the spiral channel the liquid 
is subject to centrifugal forces, which produce secondary circulation in the cross section, 
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which expands the core of the flow and accelerates the heat transport in the transverse 

direction. If we use the accelerationgcm as the parameter characterizing the centrifugal 
forces, we get the following system of parameters characterizing the flow of an incompres- 
sible liquid over the stabilized section in a bundle of fSnned rods under nearly isothermal 

condtions: de, p, ~, Uav , and gcm" This system is used with the three independent units 
of measurement (m, kg, and sec) to get from the ~ theorem [9] that there are two dimension- 

less combinations: 

Re = UavdeP/~, (18) 

F r  e = ufvlgcmd e. 

If we assume that the coolant flow in the spiral channels follows the law 

(19) 

u, /r  = const, 

then the maximum value of the tangential velocity component u T 

U~m= adr  uavlS, 

while the acceleration is given by 

is given by 

(2o) 

(21) 

gcm = 2 u ~ / d .  (22) TM t " 

We substitute (21) into (22) and (22) into (19) to get 

Fr  = Sa/2~ad d . (23) 
C r e 

Instead of Fr c we can use the modified quantity 

F r m =  S2!d d �9 (24) 
r e 

Thus numbers  ( i 8 )  and (24) c h a r a c t e r i z e  t h e  f low in  a b u n d l e  of  f i n n e d  c y l i n d r i c a l  r o d s  
and a l l o w  one  t o  g e n e r a l i z e  f rom t h e  e x p e r i m e n t a l  d a t a  on t h e  mix ing  c o e f f i c i e n t s  f o r  geome- 
trically dissimilar rod bundles and thus get a formula for k. 

We determine k from the experimental data on ~ of [2, 3], which were obtained by heat- 
ing the central rod; these studies were based on assemblies of 61 rods with single-start wire 
winding to produce a rib on the body, while the coolants were sodium and air. The geometrical 
dimensions of the bundles of cylindrical rods in [2, 3] are given in Table 1 along with the 
observed values of ~. 

It is found [2, 3] that the Reynolds number does not affect ~ in the range Re = 0.8" 
104-7-10" covered by the experiment; therefore, ~ and k are affected only by Fr m together 
with the transformed longitudinal coordinate 2ax/d r if the length of the bundle is short. 
To determine k we compare the measured temperature patterns with the calculated ones from 
(3)-(6) on the assumption that k is constant along the rod bundle. However, if only a single 
rod is heated, there is in fact a fairly extended initial part on which a universal_temper- 
ature profile is built up. The value of k may be taken as constant, and therefore ~ also, 
only for the stabilized flow section, or else as approximately constant over the entire 
length if this is large enough, when the effects of the initial part may be neglected. These 
values of k and ~ are called asymptotic and denoted, respectively,by k ' ~as; the lengthof 

the initial part increases with Fr m. as 

The dependence of kas (;as) on Fr m can be defined as follows. We introduce the trans- 
formed longitudinal coordinate in the bundle 2ax/dr, where a is a coefficient representing 
the structure [i0], which characterizes the rate at which a jet dies out when it propagates 
in the bundle, which is independent of Fr m (of thepitch of the fins). We assume that the jet 
in the bundle propagates in accordance with laws close to those for an enclosed jet, while 
the angle of expansion of the jet is twice the angle of the spiral winding. Then we have 
the following relationship for a: 

11,37q_ 246 
a = 0.075 q- - F ~  m Frm , (25) 
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TABLE i. Initial Geometrical Dimensions of Finned-Rod Bundles 
and Experimental Data on the Mixing Coefficient (bundles Nos. 
i-3 [ 2 ] ,  No. 4 [ 3 ] )  

Parameter 

Sodium 
100 

7,9 
12,7 

4 
25 

0,38 
318 
1000 

O,11 
O, i07 
0, I13 
0,043 
0,0418 
0,0441 
0,115 

Bundle No. 

Coolant 
Pitch S of winding, mm 

Diam. of cylindrical rod, mm 

Diam d~ of rod with winding s mm 
Ratio S/d r 
Equiv. diam. d e, m m 

Ra~.o S / d  e 
F rm 
LeNgth of rod bundle, mm 
Coefficients: 

~, I/cm 
P;min' 1 /cm 
,ttma x,  I / c m  

]~min 

k m a x  
let-~tructure coeff, a 
Transformed longitudinal coordi- 
nate " 2ax/d r 29,1 

2 I 3 

Sodium I Sodium 
200 300 

6 6 

7,9 7 , 9  
25,3 38 

4 4 
50 75 

0,38 0.38 
1260 2850 
1000 1000 

0,0535 0,032 
0,047 0,027 
0,06 0,037 
0,0208 0,01245 
0,0183 0,0105 
0,0234 0,0144 
0,084 0,0788 

21,3 19.6 

Air 
100 

6 

7,02 
I4,2 
2,633 
38 

540 
660 

0,067 
0,057 
O, 077 
0,03!2 
0, 0266 
O, 0358 
0,0767 

14,4 

/Jas as 
0,8 

@ 
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Relative mixing coefficient as a function of transformed 
longitudinal coordinate: i) data of [2]; 2) data of [3]; 3) from 
(26); 4 and 5) curves characterizing the limiting deviations of 
the coefficient. 

Fig. 2. The Frm_dependence of the asymptotic values of the mixing 
coefficient: I) kas (Na) (27); 2) kas (air) (28); 3) ~as, i/cm (Na) 

(29); 4) ~as, i/cm (air) (30)~ 

and the data on k given by (16) and in Table 1 are closely described by 

L" _exp[_O.O504(2ax)  W-7,] 
provided that the following is obeyed for sodium: 

and the following for air: 

kas 0,77 
r ,  0 451 r r ~  

k a s - -  1.02 
r= 0 431 rr~fi 

(26 )  

(27) 

(28) 

].265 



Figure i shows the k calculated from (_16) for the experimental data [2, 3] together with 
the relationship of (26); the agreement is Rood. Figure 2 shows curves from (27) and (28), 
as well as the results for ~as' which take the following forms, respectively, for sodium 
and air: 

4de 0.77 (-29) 
 as- , 

~as-- 4de 1.02 
pZ ~ o.451 (130) 

l~rm 

The ~/~as relation is identical to (26) (Fig. i); Figs. i and 2 show that the experi- 
mental data of [2, 3] for ~ lie somewhat below ~as' and they are the lower, the larger Fr m 
for a given bundle length. 

NOTATION 

Gij , transverse flow from cell i into cell j per unit length; Gi, axial flow rate; T, 
temperature; u, velocity; p, density; P, pressure; x, r, coordinates; ~, hydraulic-resis- 
tance coefficient; PrT, turbulent Prandtl number; Cp, specific heat; qv, volumetric heat- 
production rate; %, thermal conductivity; Ro, bundle radius; F, , useful cross section; HT.7, 
wetted perimeter; ~, viscosity; Re, Reynolds number; Frm, centrifugal flow factor. 
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